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Introduction: Background

CO2 Emissions of Automobiles is Very Huge

CO2 Emissions by Economic Sector
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Introduction: Milestones and Challenges

The Development of EV in Hong Kong has 3 Milestones

Private Charging Facilities

m >150 000

Public Charging Facilities

m >5000
(Plan to double in the future)

No new registration of fuel-propelled
private cars including different types

of hybrids in Hong Kon .
3/ g g x .\“

in 2035 or earlier
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Increasing rate of load peak
Oct. 2023: 46,664 kW / 9,861,000 kW = 0.47%

2025: 90, 000kW /9,861,000 kW =9.13%

2050: 1,833,964 kW /9.861,000 kw = 18.60%

Many EVs Randomly Charging Cause Impact



Introduction: Milestones and Challenges

Calculation of load peak with unmanaged charging

= Max conventional electricity load in 2021
= CLP Power: 7,477,000 kW
» HKE: 2,384,000 kW
= Total: 9,861,000 kW, assume that the total load peak will not change in the future

= Amount of charging in HK

= Sept. 2023: 7,085 EV chargers for public use, including 3,950 medium chargers, 1,092 quick chargers and other 2,043
chargers are not specified, we assume they are medium chargers.

= 2025: 150,000 for private charger and 5,000 for public charger

= 2050: By Oct. 2023, the total number of EVs is 70,701, 7.7% of the total number of vehicles. So, total EVs in 2050 can
be assumpted as 70,701 / 7.7% = 918,195. Let’s assume that 3 vehicles share one private charger, which is 918,195 / 3
= 306,065. Let’s assume that the public chargers are 10,000

= Max EV charging load .

= Average charging power for private charger: 220V * 16 A =7 kW

= Average charging power for public charger: 380V * 32 A=12 kW

= Charging simultaneity factor for private charger : 0.8

= Charging simultaneity factor for public charger : 1.0

» Oct. 2023: (3,950 +2,043) * 7 kW * 0.8 + 1,092 * 12 kW * 1.0 = 33,560 kW + 13,104 kW = 46,664 kW

= 2025:150,000 * 7 kW * 0.8 + 5,000 * 12 kW * 1.0 = 840,000 kW + 60,000 kW = 900, 000kW

= 2050: 306,065 * 7 kW * 0.8 + 10,000 * 12 kW * 1.0 = 1,713,964 kW + 120,000 kW = 1,833,964 kW

= Load peak lift rate
= Oct. 2023: 46,664 kW / 9,861,000 kW = 0.47%
= 2025:90, 000kW / 9,861,000 kW = 9.13%
= 2050: 1,833,964 kW / 9,861,000 kW = 18.60%

Hong Kong: The Facts — Power and Gas Supplies (2022 Jul) (www. gov. hk)

Technical Guidelines on Charging Facilities for Electric Vehicles (emsd. gov. hk)
EVRoadmapEng17 3. indd (eeb. gov. hk)
Promotion of Electric Vehicles | Environmental Protection Department (epd. gov. hk)



https://www.emsd.gov.hk/filemanager/en/content_444/Charging_Facilities_Electric_Vehicles.pdf
https://www.gov.hk/en/about/abouthk/factsheets/docs/power_gas_supplies.pdf
https://www.emsd.gov.hk/filemanager/en/content_444/Charging_Facilities_Electric_Vehicles.pdf
https://www.eeb.gov.hk/sites/default/files/pdf/EV_roadmap_eng.pdf
https://www.epd.gov.hk/epd/english/environmentinhk/air/promotion_ev/promotion_ev.html

Introduction: Current Solution and Privacy Leakage Issue

How will the existing power grid cope with the impact
of mass access to EVs?

Vehicle-to-grid (V2G) technology

What & Why V2G? How to conduct V2G?
——————— n/f,e 1 dis
Dat
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- ‘ | — 2. Centra!lzed 5
l computing o
1 I Charging (=3
Up\oad 4 e 2
Grid Charging company
Power grid stability A new economic growth driver
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= EV user Government 03
(7]

Profitable for services Carbon neutrality

Overall society
Low carbon emission Privacy leakage

Kempton, Willett, and Jasna Tomié. "Vehicle-to-grid power fundamentals: Calculating capacity and net revenue." Journal of
power sources 144.1 (2005): 268-279.



Introduction: Current Solution and Computational Burden Issue

V2G Problem of Minimizing Load Variance Transform from Centralized to Distributed
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Shang, Yitong, et al. "Computational performance analysis for centralized coordinated charging methods of plug-in electric
vehicles: From the grid operator perspective." International Transactions on Electrical Energy Systems 30.2 (2020): e12229.



Background
EV charging randomly

Brief Summary

Current solution
1. Introduction — V2G

Potential issues
Privacy leakage and
computational complexity

Proposed framework

?




Contents

1. Introduction

2. High Computational Performance Algorithm

3. High Information Security Method

4. High Stable Cyber-Physical-System Verification

10



High Computational Performance: A Novel Framework

Design a Distributed Framework: Internet of smart charging points (ISCP)
v' Three layers

v' One key point

v' Three advantages

Energy coordinator (EC)
of national-level grid

ECs of provincial-

/ Broadcast updated grid data

=

H*H=H~

i+2th PEV

multiple sub-ksroblems

ST o RhPEV | i#IthPEV |
K Distributed computing
/\
The overall problem is decom;}osed into
Urban ECs
Save EV data locally /
One EV one problem by one charger l 1,7 l
\
\ Gatewsy | Gateway
Bg8* | BER v x
KN K3 . | .

— — - Communication line among chargers

Communication line among ECs

Information exchange
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High Computational Performance: Strategy 1, Single Objective Function

Distributed Load Flatting Strategy for One EV in ISCP

Peak-shaving and valley filling
Power (kW)

Discharging at load peak periods

Scenario division and data preparation
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High Computational Performance: Results of Strategy 1

The Dispatch Results are Satisfied (Green Line) and the Computational Performance is Excellent

Load curve under 33% EV penetration

Power (10°kW)
35} mmm Conventional load L Vehicle-to-grid
I Uncoordinated charging
3.0
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08:00 12:00 16:00 20:00 24:00 04:00 08:00
Time
Load curve under 100% EV penetration
Power ( 104kW)
35} mmm Conventional load L Vehicle-to-grid
'L Uncoordinated charging
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Time

= Peak-shaving by 11.98%
= Valley-filling by 12.68%

Load curve under 66% EV penetration

Power (10°kW)
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Computing time with EV increasing in one time slot
Time consumed (s)

04r
* Original data
— Fitted curve
0.3f
0.2

0.1

0.0

1500 2000 2500 3000

Numbers of EVs
= About 0.4s for 3000 EVs under ISCP
= More than 250s for 120 EVs by centralized scheduling

0 500 1000

Shang, Y., et al. "A centralized vehicle-to-grid scheme with distributed computing capacity engaging internet of smart charging
points: case study." International Journal of Energy Research 45.1 (2021): 841-863. 13



High Computational Performance: Strategy 2, Double Objective Functions

Distributed Load Flatting & PV Self-consumption Strategy for One EV in ISCP

Step 1: Data collecting

e Collect the load profile of energy consumption ¢ Collect the node voltage value of distribution grid
¢ Collect the energy output profile of solar panels ¢ Collect the charging infomation value of PEV users
Load profile Voltage profile PV output Charging information
4 3
Power (10 kW) Voltage (p.u.) Power (10 kW) Number of charges CDF
3.0 1 6 6 60
088 4 40 40
2.0 0.96
2 20 20
0.94
1.0 0 0 0
08:00 16:00 24:00 08:00 08:00 16:00 24:00 08:00 07:00 11:00 15:00 19:00 08:00 16:00 24:00 08:00
Time Time Time Time

Step 2: Data preprocessing

¢ Divide the peak and valley periods of net load e Divide PEV charging scenarios

[ PEV stayed periods

Valley | Peak | Valley Valley | Peak | Valley Valley | Peak I Valley
| |

Power

Valley | Peak | Valley

(b)

: Peak I Valley

Valley | Peak | Valley Valley | Peak | Valley Valley |
! !
|
|

t1) it2
08:00 16:00 24:00 08:00
Time

(d) (e) (f)
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High Computational Performance: Strategy 2, Double Objective Functions

Distributed Load Flatting & PV Self-consumption Strategy for One EV in ISCP

v" When PV output occors, it is different from the last single objective

v' The strategy is EV charging from the highest PV output to the lowest PV output
v' Use two weight factors to describe the importance of objective

Step 3: Dispatching strategy

¢ Charging from highest PV output to lowest PV output e Dichotomy (water filling) algorithm

PV output (kW) The 2nd Conventional load (kW)

The 1% & = N, — = >time-slot

time-slot to charge

to charger| M

The last

time-sl

0

H\ H

Time Time Time

Step 4: Strategy execution

e Self-consumption of PV output by PEV charging e Peak-shaving and valley-filling of net power load
With solar energy generation Without solar energy generation
Power Power Power
Valley | Peak | Valley Valley | Peak | Valley —— Solar generation
| e ™ e Uncoordinated PEV
Wl /'\ W2 —— V2G output
\ =
| \ —— Net load
/ ! !
Z ! 1
Time Time Time

15



High Computational Performance: Computational Results of Strategy 2

The Computational Performance is also Excellent, and Scheduling One EV Shows Microsecond Basis

Proposed framework and algorithm Proposed framework with traditional algorithm
Time consumed (s) Time consumed (s)
0.6 F 3
e Original data ST e Original data
057 Fitting curve 30 Fitting curve
0.4 25 F
03 | 20 B
15 F
02t
10
0.1 F 5
g 0 500 1000 1500 2000 2500 3000 0 0 500 1000 1500 2000 2500 3000
Numbers of EVs Numbers of EV's
Centralized framework with traditional algorithm Execution time of the proposed scheme for single PEV in a

Time consumed (s)

single time interval
120F « Original data
110} Fitting curve Condition Case 1 Case 2 Case 3
68 I Power flow (s) 0.000287 0.000205 0.000299
60 F
40 + No Power flow (s) 0.000361 0.000394 0.000532
20 F
O 1 1

010 20 30 40 50 60 70 80 90
Numbers of EVs

= 0.4s for 3000 EVs under ISCP with efficient algorithm, O(NTlog,(T))
= 35s for 3000 EVs under ISCP with traditional algorithm, interior point method, O(NT3)

= 250s for 120 EVs by centralized scheduling, O((NT)3)
= Scheduling one EV at one-time slot shows microsecond basis

Shang, Y., et al. "Internet of smart charging points with photovoltaic Integration: A high-efficiency scheme enabling
optimal dispatching between electric vehicles and power grids." Applied Energy 278 (2020): 115640. 16



High Computational Performance: Dispatching Setting of Strategy 2

Modified distribution grid of SUSTech campus

Energy consumption node Charging station node




High Computational Performance: Dispatching Results of Strategy 2

The Dispatch Results are Satisfied, Expecially in PV self-consumption

Dispatch results under uncoordinated charging
Power (104kW)
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B
Voo 25

30 @Y

-0.50

Dispatch results under ISCP-PV

Power (1 04kW)
3.50
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3.00 ]
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2.00 th_ V2G Output L
1.50 o R——

1.00 [
0.50 =T
0.00 | ‘
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Time

Voltage profiles under ISCP-PV

= Peak-shaving and valley-filling by 17.54% and 12.42%
= PV self-consumption by V2G is 82.72%, which is 258.74% more than unmanaged charging

= No voltage exceeds limit in ISCP scheme

18



Brief Summary

2. High Computational Performance Algorithm —

—

Strategy
One EV, one probelm,
conducted by one charger

Objective
Load flatting and PV
self-consumption

Advantages
Achieve good performance
in a distributed manner

Potential issue
Require precise prediction
of future state in advance.

19
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High Information Security 1: Paradigm and Dataset

Handling Uncertainties of Future Data by Data-driven Method

Conventional load
htt|]os://data.mendeIey.com/giatasets/n85kwcgt7t/1
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Distribution of EV arrival times
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Flowchart of offline learning and online dispatching

Online dispatching
Module

Desensitized ana
send to training
module regularly

Raw dataset

Data preparation k?

y
Data Could demand -
preprocessing I be satisfied? II‘I:I'

LSTM training LSTM prediction l

anv: p ;h,mux l
I

i

Have all PEVs
been scheduled?

Offline learning
module

v’ Offline learning: utilize the foregone future
data from the dataset to compute label, and
utilize the historical, current data, and label
to train a learning model.

v" Online dispatching: employ the end-to-end
deep learning model conditioned on
historical and current data to directly make
scheduling decisions under uncertainties.

Shang, Y., et al. "ISCP-Data: a vehicle-to-grid dataset for commercial center and its machine learning application."
2021 IEEE 5th Conference on Energy Internet and Energy System Integration (EI2). IEEE, 2021.
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High Information Security 1: Deep Learning Model

Utilizing LSTM (a Variant of Recurrent Neural Network) and Attention Mechanism for Time

Sequence Data

Structure of RNN

LSTM cell (k-1)

Structure of LSTM

LSTM cell
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Unfold MH Avoid gradl?nt
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LSTM cell
(k)

o0 o

Overall network structure of the multichannel dual-task forecasting model.
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High Information Security 1: Results of Deep Learning Model

Comparison with state of art in train process Compariséon with other methods in conventional load
Accuracy Power (10kW)
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Qualitative analysis for different methods
Method Computation time (s) Handle Privacy- Scenarios
uncertainties reservin adaptabilit
80 EVs 1000 EVs o . SR
Conl 96.3064 -- X X X
Con2 0.7408 12.9258 X '} X
LSTM 0.0161 1.9784 V Vv Vv

Shang, Y., et al. "Achieving efficient and adaptable dispatching for vehicle-to-grid using distributed edge computing
and attention-based LSTM." IEEE Transactions on Industrial Informatics 18.10 (2021): 6915-6926.
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High Information Security 2: Federated Learning for Handling Digital Asset Leakage

Past issues 1: EV users’ privacy &
computational complexity

Past issue 2: uncertainties handling arising
from unknown future parameters

O O OO
L L D S
e |

Solution 2: data-driven method

New issue: digital asset leakage
due to restricted data at charging
stations

Data clustering «— Y

Spatlal based clustering Time-based clustering
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Clustering data

Local training
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Federated learning

2nd cs,
CIoud

- " Global
server gd:I

Distributed dispatch

Data
annotation

¢ Desensitization

IstEV F 2nd gV

Nth EV data
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High Information Security 2: Results of Federated Learning

Trend curve of loss and accuracy for learning

Loss
0.9

Accuracy

0.85

08| 7

0.6 -

FedAvg_loss

Avg_csl_loss
Avg_cs2_loss
Avg_cs3_loss
FedAvg_acc
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0.5+ \

-10.80

0.4

50

Round

Comparison for no clustering and two clustering

Accuracy
1.07

0.94

Accuracy bench of non-clustering method

-

0.70
100

0.81

0.74

0.61

0.5-

1 2 3
Spatial-based
Method and group

1 2
Time-based

3

Training results of federated and centralized learning

Type

FedISCP

CenlISCP

model
FedAvg
Avg_csl
Avg_cs2
Avg_cs3
CenAgg
Cen_csl
Cen_cs2

Cen_cs3

Accuracy
0.83267
0.83000
0.82900
0.83900
0.86300
0.81400
0.81800
0.82700

Precision
0.80052
0.79093
0.80903
0.80160
0.83322
0.77427
0.80201
0.77454

Results with different clustering methods

Method

Non

Spatial
based

Temporal
based

Group

1

Accuracy
0.83267
0.89667
0.70833
0.88167
0.76700
0.93400

0.95500

Precision

0.80052

0.85772

0.53470

0.85188

0.71523

0.82319

0.81908

Recall

0.83267
0.83000
0.82900
0.83900
0.86300
0.81400
0.81800
0.82700

Recall

0.83267
0.89667
0.70833
0.88167
0.76700
0.93400

0.95500

F1-score
0.83008
0.82739
0.82580
0.83705
0.86198
0.80707
0.81414
0.82541

Fl-score

0.83008

0.89567

0.69844

0.88157

0.75144

0.93146

0.95163



High Information Security 2: Results of Federated Learning

Randomly Selecting Method can Guarantee the Training Performace and Decrease Training Time

Training results for randomly selecting to participate in federated Current work: federated learning for V2G scheduling
learning (20 CSs in total) with Non-IID Data
Method Number Accuracy Precision Recall Fl-score I//—____________;_d__—\\l
I ) server
Non- 3 0.78760 0.59906 0.78760  0.74965 \ ' //'
cluster e e
5 0.79370 0.69613 0.79370 0.77434
10 0.79970 0.71754 0.79970 0.77980 -
15 0.79250 0.68735 0.79250 0.76929 Locatcs: [ cs2 oy . esv [g
Middle- Small- Middle- *** Large- '
20 0.79130 0.64594 0.79130 0.76000 size data e} size data g & size data size data
Z‘me‘; 3 0.94880 0.69503 0.94880  0.93962 -~ e
ase GGEEEeeP \Tom ST
5 0.94820 0.69453 009482 093903  ~— DD Sl iy
10 0.94790 0.69430 0.94790 0.93974
Problem 1: Different data sample size and differnert
15 0.94820  0.69451  0.94820  0.93903 data distribution. Training results need to be
20 0.94830 0.69468 0.94830 0.93913 improved.

Problem 2: Need therotical proof of convergence in
Training time for randomly selecting to participate in federated federated learning

learning (20 CSs in total)
Random number 3 5 10 15 20
Training time (s) 7864 12654 24714 36341 45216

Shang, Y., et al. "Secure and Efficient V2G Scheme through Edge Computing and Federated Learning." 2022 4th International
Conference on Smart Power & Internet Energy Systems (SPIES). IEEE, 2022. (Best Paper Award)

Shang, V., et al. “FedPT-V2G: Security Enhanced Federated Transformer Learning for Real-time V2G Dispatch with Non-IID Data.”
Applied Energy. (In Second Round Review)

Shang, Y., et al. “An Information Security Solution for Vehicle-to-grid Scheduling by Distributed Edge Computing and Federated

Deep Learning.” IEEE Transactions on Industrial Applications. (In Second Round Review) 26



Brief Summary

3. High Information Security Method

—

Dataset
Real-world data

Handling uncertainties
LSTM-+attention

Protected data asset
Federated learning

Next work
Cyber-physical-system
verification

27



Contents

1. Introduction

2. High Computational Performance Algorithm

3. High Information Security Method

4. High Stable Cyber-Physical-System Verification

28



High Stable Cyber-Physical-System Verification: Architecture

Analysing and Setting of Network Communication in ISCP, which Has Three Parts

v Distributed computing for Privacy-preserving of EV users

4 Security checking of of power flow for Privacy-preserving of Grid

Cyber-physical-system of ISCP framework

Application
Day-head Real-time
Short time scale Long time scale
Data prediction Optimal dispatch Voltage contorl
Boundary computing Demand response Power control
N\

/
/

|

|

|

|

|

|

|

|

|

|

|

|

High safty r

Network :
|
|
|
|
|
|
|
|
|

Perception

Data transmission and computational process in ISCP

Grid side

Privacy-preserving for
the power grid

Grid-ISCP

Step 1: Grid sends

dispatching signals to

super charger

I

ISCP side

i

Step 2: distributed
communication between

chargers

Step 3: distributed
computing between
chargers

Step 4: chargers send the
decisions to super charger

!

Step 5: super charger

sends V2G decisions to

grid

Step 6: Grid carries out
security check

Step 7: Grid sends verified
decisions to super charger

I

Privacy-preserving for
the EV users

L
Step 8: super charger
sends decisions to each of
charger
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High Stable Cyber-Physical-System Verification: Small-world Netork

Description for different networks

Name Fully meshed Lattice/regular Small world
Typology 1 : '

Edge N(N-1)/2 NK/2 NK/2
Wring cost Large Small Small

Mean path length | Small Large Small
Latency Small Large Small

Network typology of ISCP utilizing smart-world network

Small-world Network

v' Based on 6 degree theroy
v Low wring cost

v Low latency

5 charging station (CS), each CS: 20 nodes, 6 degrees, 0.5 1 CS: 600 nodes, 6 degrees, 0.5

A Superchargernode @00®

Charger node
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High Stable Cyber-Physical-System Verification: Netork Simulation

Analysing Different Scenirios, Find Suitable Parameters, and Simulate the Communication in ISCP

Network simulation for different data rates (detailed delay)

Time (10°5) Ratio (%)
4.0} M= Propagation and queueing delay n n n n nd 40
B Transmission delay
351 | |m=m Total delay [ LT 35
3.0 Packet loss » 1430
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2.0 i t / fl 420
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Network simulation for different data rates (total delay)
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Network simulation for different packet size

Time (10's)
14 ] ! \ \ ]
12 I Propagation and queueing delay _

I Transmission delay
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Network simulation for distributed computing

fige(d |
(! I Propagation and queueing delay
2.5 I Transmission delay

[ Total delay

2.0
Lessthan1s
1.5 = R
\
1.0} i
/ \
0.5
|
/
a 1184 bytes/serial 584 bytes/serial 584 bytes/paralfel

Case

Comparison among different topologies concerning communication efficiency and wring cost

Network topology Lattice (K=2)
Delay (s) 53.7149
Wring cost 3x103

Lattice (K=6) Small world Fully meshed
18.6315 0.590653 0.109501
9x103 9x103 4.4985x106

Shang, Y., et al. "Cyber-physical co-modeling and optimal energy dispatching within internet of smart charging points for
vehicle-to-grid operation." Applied Energy 303 (2021): 117595.
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Current work: software verification for ISCP
framework

e
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cs4
Future work: scale-down hardware
verification for ISCP

High Stable Cyber-Physical-System Verification: Next Work

Future work: Multi-block ADMM for distributed V2G based on scale-down

SuInpayds peaye-Le(
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|

hardware verfication

l
!
I
l
l
l
I
l
[
l
|

For more about ADMM, please refer to homepage of Prof. He Bingsheng

http://maths.nju.edu.cn/~hebma/

Dispaly screen

Six chargers

Communication
station



Work summary
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The following book is being

Distributed Vehicle-to-grid Scheduling Strategy:
Computational Efficiency, Information Security and Multi-dimensional Verification



Looking Ahead

Previous work

Future work

High Computational Performance Only grid but not including users cost
Distributed optimal algorithm Cannot guarantee global convergence
High Information Security Challenge Not including interaction among EV's
Distributed data driven method Non-iid data in federated learning
High Stable CPP System Only simulation but not hardware
Small-world network with NS2 More comprehensive joint verification

Joint V2G prediction securely and effectually with federated multi-task learning
Real-time V2G incentive pricing mechanism with prediction model and non cooperative game

Privacy-preserving and global convergence optimal V2G dispatch with efficient parallel ADMM
Robust and secure data-driven V2G dispatch with GCN and personalized federated learning

Scale-down hardware platform for joint verification including energy, computation, and network
Choose the appropriate method according to the specific situation

A4 . s
‘Dissemination Plan: journal paper, conference activty, public engagement, digital platform, etc.
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Thank You!

Yitong SHANG
ytshang@ust.hk

Sincere blessings to colleagues
in MESPO group!



